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Entry flow in a channel. Part 3. 
Inlet in a uniform stream 
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(Received 28 August 1972) 

This paper complements earlier papers by Van Dyke (1970) and by Wilson (1971) 
which have appeared under the same title. Second-order boundary-layer theory 
is used to examine the region near the entrance to a single channel placed in a 
uniform stream. It is found that there are additional effects to those present in the 
three models treated by Van Dyke and Wilson. In  particular, the cascade model 
misses the leading term in the separation force while the irrotational-entry model 
misses that in the skin friction. 

There are also two new effects far downstream: logarithmic terms appear 
(apparently for the first time in second-order theory); and a resonance with the 
f i s t  eigensolution occurs. 

1. Introduction 
Although there has been extensive literature, some analytical but most 

numerical, on the flow in the entrance of a plane channel, it was only two years 
ago that the problem, in both its aspects, was examined critically from the point 
of view of boundary-layer theory by Van Dyke (1970). In  particular, he showed 
that previous boundary-layer analysis was valid very far downstream and not 
a t  the entrance as had been supposed. A more thorough treatment of the mathe- 
matical questions involved in the boundary-layer structure was later given by 
Wilson (1971). 

I n  numerical work three models are used: (i) infinite cascade, (ii) irrotational 
entry and (iii) uniform entry. [Van Dyke does not treat (ii) though he acknow- 
ledges its significance.] The first of these is quite special while the others are arti- 
ficial. None of the three can represent actual entry conditions presented by any 
realistic upstream flow of interest [though Van Dyke speaks of a mesh of varying 
porosity having been used to produce (iii)]. Such models are used in order to 
avoid discussing the upstream flow. Indeed Wilson’s conclusion that (i) is the 
most satisfactory and (iii) the least is based on the nature of the second-order 
boundary layers and not on their simulation of actual upstream flow. 

In  the present study we examine the flow in a single channel forming an inlet 
in an otherwise uniform stream (figure 1). While it can be argued that this is the 
true inlet problem, it suffices to have it recognized as an entry-flow problem in- 
corporating upstream conditions of more interest than those of the cascade. 
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FIGURE 1. Flow geometry. 
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FIGURE 2.  Calculated velocity profile across entrance of channel for R = 75: ----, 
cascade (Van Dyke 1970) ; - , present inlet. 

It admits exact solution, in the sense of second-order boundary-layer theory, 
although the Wiener-Hopf technique is required to derive it (rather than the 
straightforward Fourier analysis of Van Dyke and Wilson). 

As far as a leading edge is concerned, the second-order boundary layer has 
features which are not present in the cascade but are in the irrotational-entry 
model (which Wilson considers artificial; in fact, it has a fatal flaw, see 55.1). 
Neither (i) nor (ii) is completely satisfactory (though the peculiar behaviour for 
uniform entry is absent)t. The cascade suppresses local circulation, which is the 
dominant contributor to  the forces of separation of the channel walls. Irrotational 
entry misses the leading skin-friction term. 

Far downstream inside the channel the boundary layer is similar to that in the 
cascade model (discussed by Wilson). However, unlike the cascade (and the other 

t The computed streamwise velocity profile across the entrance of the channel is shown 
in figure 2.  
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two models) our channel has an outside, the boundary layers on which have a 
novel feature. As well as the usual inverse powers of the distance x, the inviscid 
surface speed has such terms multiplied by powers of x-l logx, which induce 
corresponding terms in the boundary layer. In  the classical problem of flow past 
a semi-infinite flat plate such logarithms only arise in approximations of order 
higher than the second (Goldstein 1960, chap. 8). 

Our set-up exhibits an additional effect, not present in any of the models. 
If the pressure far downstream inside the channel is not maintained at  the correct 
level, global circulation around each wall of the channel will occur. While nothing 
new arises in the internal boundary layers, the external boundary layers far 
downstream exhibit, in addition to logarithmic terms similar to those mentioned 
above, a resonance. The forcing function associated with the inviscid surface 
speed contains x-4, which is also the x dependence of the fist eigensolution, 
resulting in an x-3 log x term in the boundary layer. This resonance would in fact 
occur in the classical problem above if second-order circulation wereIadmitted. 
Indeed, it even appears at  the first order for flow past a parabola (Van Dyke 
1964). 

While the boundary layer far downstream is only of importance when it 
comes to matching with the fully diffused regions beyond, the occurrence of these 
new features is worth noting. 

2. Formulation 
The half-width a of the channel is chosen as the reference length and the free- 

stream speed U as the reference velocity. The Reynolds number R is Ua/v. 
Then the dimensionless stream function satisfies 

The boundary conditions are those of a uniform flow far upstream and no slip 
a t  the walls of the channel, i.e. 

$(x,O) = $Jx, 0) = 0, $ N y as x --f -a. 

Owing to the symmetry, the mid-plane of the channel will always be a stream 
surface, so that 

and it suffices to consider only the lower half of the configuration (y < 1). 
The flow divides itself into an inviscid core and wall boundary layers. In  

these regions, designated as ' outer ' and 'inner ' respectively, the stream function 
may be expanded as 

$(x, 1) = 1 for all x 

(rl(x, y) + R-* $&, y) + . . . in the outer region, $4 R-*Yl(x, Y )  + R-lY',(x, Y )  + . . . in the inner region, 

where Y = Riy is the appropriate stretched variable for the inner region. It 
should be noted that these expansions are valid uniformly only for x = o(R). 

49-2 
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An O(R-1) region at the leading edge of the wall is also excluded. The first-order 
solution is just the undisturbed stream = y, so that the first-order inner solu- 
tion is the Blasius boundary layer. Writing 7 = Y/(2x)* and'€"', = (2x)i fo( & 7) for 
Y 0, we have 

fo = r-p+a.e.s. in r ]  for 7 large, 

where a.e.s. stands for terms asymptotically exponentially small andP = 1.21678. 

3. Calculation of the inviscid disturbance 

boundary conditions 
The second-order outer solution $z is found to satisfy Laplace's equation with 

$&, I) = 0, @&, y) + 0 as y -f - 03 for all x, (3.1) 

and qFZx(x, 2 0)  = & +kx-+ for x > 0, 

where k = - 2*p. The last equation may be integrated to yield 

$2(x, f 0)  = f k x i +  $-O for x > 0, (3.2) 

where the integration constant $O represents a global circulation around the wall. 
While such a term is easily incorporated in the following analysis, we prefer to 
deal with it later ($4) and restrict attention here to the flow without global 
circulation?. Let 

$&, 2 0) = g(x) for x < 0 (3.3) 

and (3.4) 

where the functions f(x) and g(x) are 'half-unknown', on the positive and the 
negative x axes respectively. 

The Fourier transform is defined as 

with the inverse 

On occasion, it may be necessary to indent the contour of integration above or 
below the origin in the complex 5 plane. 

The Fourier transform of Laplace's equation has the solution 

t A referee has suggested that the conformal mapping used in $ 4  may secure the results 
more quickly than the Wiener-Hopf technique adopted here. However, we were unable to 
complete the asymptotics that way, while non-trivial modifications of stmdard Wiener- 
Hopf arguments (§ 3 and appendix) did yield them. 
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satisfying the boundary conditions (3.1)-(3.3). Here? 

?id = k&/S(i@ 

0 for x < 0,  

kxh for x > 0. 
corresponding to n(x) = 

773 

(3.61 

Similarly the 'half-unknown ' functionsf(z) and g(x) transform into!-(() and 8+(5) 
respectively. In  the usual way we write 

It[ = (E+is)+(E-ie)* 

and take the limit 8 -+ 0 a t  the end. The jump condition (3.4) now leads to the 
Wiener-Hopf equation 

g+K+%l&l(coth - 1) = -f-, 
where K(6) = ce"l/sinhE. 

The overlap strip of regularity is - 8 < Im E < 0. 
It is possible to factorize the kernel: 

K(E) = K+(E)K-(B, 

where the K* are two zeroless functions with algebraic growth as 5 -+ co in the 
appropriate half-planes. Details of the K* are given in the appendix. The Wiener- 
Hopf equation may then be written as 

(3.7) 
where 

is regular in the overlap strip and decays (exponentially) as Re5 -f 5 co. It can 
therefore be decomposed as the sum P+ + P-, with 

S+K+ + P = -f-/K-, 

P(E) = (%/K-) 1E1 (coth I f [  - 1) 

where the path of integration C- is from - m to 00 and is indented below the point 
z = 0. A similar expression holds for P-. Details of P+ are given in the appendix. 
If now (3.7) is written as 

S+ K+ + P+ = - P- -f-/K-, 

the left-hand side is regular in the upper half-plane Im > - e and the right-hand 
side is regular in the overlapping lower half-plane Im E < 0. Together the two sides 
of the equation define an entire function which must be zero if the force of sepa- 
ration of the channel walls is to be integrable a t  the leading edge. Thus 

S+ = - P+/K+. (3.9) 

Substitution of S+ into (3.5) now gives the stream function. (Details of S+ are 
given in the appendix.) 

Of greater interest, however, is the displacement speed $'zzI(x, & 0 ) ,  because it 
provides the matching condition for the second-order boundary layer and is 

t The subscripts + or - indicate whether a function is regular in the upper or the lower 
half-planes &s defined by the strip of regularity below. 
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also the negative of the disturbance pressure. It is not possible to obtain a closed- 
form expression for $2y(x, +_ 0) ,  but its behaviour along different stretches of 
the x axis can be ascertained. 

3.1. Displacement speed near the leading edge 

To determine $2y(x, ~f: 0) near the leading edge of the wall it is best to look at  
its Fourier transform 

(3.10) 

The transform must be decomposed into functions regular in half-planes. The 
asymptotic expansions of these functions for large [ then give the required 
behaviour. For convenience, we write 

and treat each in turn. 

Because of the exponential convergence provided by (coth IzI - l), F1- can be 
expanded for large [ by writing 

- 1 = -;(l+z+...) 2 

2 - t  

and integrating term by term. Thus 

where (3.11) 

The integration may be taken along the real axis for every n except n = 1, in 
which case the 2-3 singularity at  the origin must first be subtracted out. The a, 
are all real.? 

(ii) The expansion of 

for large is obtained in the same way and the result is 

where (3.12) 

t The f is t  few a, and other coefficients appearing later are listed in tables 1, 2 and 3. 
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n a n  b* d n  

1 0.730 - 0.380 - 0.417 
2 0-326 0.252 -0.180 
3 0.126 - 0.268 - 0.059 

TABLE 1 

n A n  C n  en 

0 - 1.000 0.141 - 0.399 
1 - 0.083 0.0 - 0.333 
2 - 0.028 1.738 - 0.208 

T a m  2 

rn n Em, L'mn 

0 0 0.318 - 2.367 
0 1 - 0.683 - 2.375 
1 1 - 0.318 4.734 

TABLE 3 

The integration may be taken along the real axis for all n; the c, are all real and 
independent of k. 

(iii) The integral 

can be evaluated explicitly by writing 

d = lim (z -{el%. 

By completing the contour in the upper half-plane we iind that the integral 
is of O($) ,  so that in the limit F3- = 0. 

€+O 

(iv) To deal with 

where the path of integration C+ is from - 00 to co and is indented above the point 
x = 0, we subtract out from S+ the leading term of its asymptotic expansion for 
large z (see the appendix) so that 

ax. 

By expressing 2% [which now has the cut ( - im, O ) ]  as 

lim (z  + is)% 

and then completing the contour in the lower half-plane, the &st integral may 
be explicitly evaluated as a multiple of [-4. We now rewrite the second integral to 

E J O  
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where 

The leading pair of terms in the expansion of F4- is thus determined. To get higher 
pairs, we subtract out from g+ more terms in its expansion for 1arge:z. The:result 
is 

where the b, are d e b e d  in the appendix and 

The coefficients d, are all real and independent of k. 

mined : 
In  a similar manner, the expansions for the + parts of the F's can be deter- 

Now, in terms of the F7s, equation (3.10) can be written as 

so that 

+ ... , I + 

Since the displacement speed is continuous across the negative x axis, 

(3.14) 

We were unable to prove this result directly without introducing the + functions. 
They would not otherwise have been introduced since the behaviour of 
as x -+ 0 - is not of great interest. 
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Fourier inversion and the use of (3.14) now yield 

777 

We now direct attention to this last result (which holds, of course, outside an 
O(R-1) neighbourhood of the leading edge). A comparison with Wilson’s results 
shows that neither the cascade nor the irrotational-entry version of the inlet 
problem correctly describes the flow near the leading edge. The cascade model 
misses the O(x-*) term, which provides the major contribution to the forces of 
separation between the channel walls, as well as all following half-powers ; whereas 
the irrotational-entry model suppresses the O( 1) term, which is the dominant 
contributor to  leading-edge skin friction, and all following half-powers. 

The O(x-*) term in the inviscid surface speed represents a local circulation 
around the leading edge. Wilson encounters this term only for irrotational entry 
and contends that it ‘reflects the artificial imposition of a boundary condition at 
the inlet ’. However, as pointed out by Ludford & Olunloyo (1972a),  leading-edge 
circulation is agenuine characteristicof flows that are not symmetrically bounded. 
Indeed, on writing (3.15) in a dimensional form and letting the channel half- 
width a + m it can be seen that the O ( x 4 )  term survives in the limit, i.e. the 
asymmetry of the flow is preserved however far apart the two walls of the channel 
are. It is the forced symmetry imposed by the cascade that suppresses the local 
circulation. 

3.2. Displacement speed far downstream 

The behaviour of $211(x, f 0 )  far downstream is determined by expanding the 
transform $,(t;, + 0 )  near its lowest singularity (the origin ) in the upper half- 
plane. From (3.10),  we get 

where the B2p are the Bernoulli numbers, and 

where (A10) (from the appendix) has been used. Upon Fourier inversion, the 
first term of (3.16) contributes an exponentially small term, since its lowest 
singularity is at  5 = in and not a t  6 = 0;  while the remainder yield 

where 

(3 .18)  

(3.19) 
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FIGURE 3. Mapping lower half of flow region in z plane onto upper half 
of w plane. 

I n  (3.17) the contribution from the first term vanishes in the limit B -+ 0 and the 
remainder yield 

where 
(3.20) 

cp = (2n)-1Apr(p++) (3.21) 

and the Drp are related to the Brp by the expression 

(3.22) 

These results indicate that inside the channel the inviscid speed increases like 
.xi far downstream. This acceleration in the core is caused by the thickening 
boundary layers at the walls. Outside the channel, the inviscid speed decays like 
2-Q. 

.4. Global circulation 
Global circulation around the channel wall has been avoided by omitting the 

integration constant in condition (3.2). Although the Wiener-Hopf analysis can 
be modified to take account of this constant, conformal mapping gives the results 
more easily. 

x = ---I (w+logw+ 1 ) + i  
The transformation 

maps the half-plane Im z < I slit along the positive real axis onto the upper half 
of the w plane as shown in figure 3. The circulation solution is therefore 

= n-l$oIm (log w), 
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FIGURE 4. Application to finite channel, terminating well before 
the interior boundary layers join. 

$O being the constant value of the stream function on the wall. The corresponding 
x velocity is 1c.",(x, y) = -$"Re (w + l)-l. 

The leading edge maps into w = - 1 and expansion near it gives 

where the ep are given by the relation 

Infinity downstream inside and outside the channel map into w = 0- and 
w = - 00 respectively. Expansions there yield 

- $o + 8.e.s. in x 
Pv(x, rf:O) W st8 x + + w ,  (4.3) 

where the Zrp are given by the relation 
00 

2 2-p--l g lrp(logzyy-log[l+( 5 2-p--l r=O g ( b g z y y ]  = 272. (4.4) 
(II-0 r=O p=o 

The value of $O is fixed by downstream conditions in the channel. For example, 
if the channel is terminated a t  x = x, > 1 (see figure 4), the resultant equaliza- 
tion of pressure inside and outside at that section makes 

$0 = ICA, x4, approximately. 

Here (3.18), (3.20) and (4.3) have been used. 

5. Second-order boundary layer 

Y2(x, Y )  = g(x, 7) and inserting the inner expansion 

$ - R-*Y1+R-lY2+ ... 

I n  this section, the second-order stream function Y, is examined. Writing 

into the full Navier-Stokes equation (2. l) ,  g is found to satisfy 

s,,,, + f o  s,,, + 2.f; g,,+f: 9, + 2x(fiY gx -f ; 9, ,x)  = 0, 
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fo being the Blasius function. The boundary conditions are 
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g(x, 0) = g,(x,O) = 0, g, = P ( x )  +a.e.s. in 7 as 7 -+ 00, 

where the forcing function 
P(4 = (2x)Wr,,(x, & 0). 

5.1. Expansion near the leading edge 

From (3.15) and (5.1), the asymptotic expansion of P ( x )  as x +- O f  is 

This suggests the boundary-layer expansion 

as x+O+ for y = & O ,  (5.2) 
where the G,, for all real A, satisfy 

subject to the conditions 

GA(0) = Gi(0) = 0, Gi  = 1 +a.e.s. in T,I as 7 -+ 00. 

The second-order dimensionless shear at the wall is 

C, = 2R-1Y2,,(~, 0) 

When the two sides of the wall are considered jointly, only the fractional powers 
of x survive in (5.3), the integral powers cancelling. 

Wilson, who considers only one side of the wall in hisirrotational-entry analysis, 
observes that the non-integrable O(x-l) term in the shear stress is absent because 
its multiplying factor GI;(O) [h”(O) in his notation] is zero. That this is not so 
has been shown by Ludford & Olunloyo (19724,  who obtain a result equivalent 
to G;1(0) = -p. They also point out that the presence of non-integrable bading- 
edge skin friction raises a doubt about the physical realism of the irrotational 
model, in which only the inside of the channel is considered. 

The values of G~(p+l)(0) for p = 0,1,  . . . ,5  have been given (correctly) by Wilson 
[his gL(0) for n = 0,1, . .., 51. There is little interest in the Gg(0) since they dis- 
appear from the two-sided shear result, as noted above. 

5.2. Expansion far downstream 

For y = + 0, P(x)  has the expansion 

00 

P ( x )  - 24k A , x - ~ P + ~  as x ++a, 
P=O 
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where the A, are defined by (3.19). Consequently, the boundary-layer expansion 
may be written as 

Here, the first set of terms is the result of direct matching with the expansion 
for F(x) ,  while the second set consists of the eigensolutions. The y are the eigen- 
values and the GY the corresponding eigenfunctions of the homogeneous problem, 

L,[GJ = 0, GJO) = O;(O) = 0, 0; = a.e.s. in 7 as 7 -+ co. i.e. 

Libby & Pox (1963) have shown that the eigenvalues are all real and negative 
and form a countable set, the first few being - +, - 1-387, - 2.314, . . . . The co- 
efficients JY cannot be determined by direct matching; indeed Wilson has shown 
how they depend upon the global character of F(x) .  

Thus, far downstream inside the channel the leading term in the boundary- 
layer expansion is of O ( x ) ,  followed by the O(x-*) eigensolution and then by 
the O(x-1) forced term, as predicted by Wilson in his cascade analysis. 

Fory = -0 ,  

1 00 P 
F(Z)  - 2& c c ~ x * - ~ +  c X - P ~  c DTp(logxy as 5 -f +a, 

where the coefficients Cp and Drp are defined by (3.21) and (3.22) respectively. 
The boundary-layer expansion may then be written as 

K O  p=o T=O 

as x+ +a. (5.5) 
Here, the GC,-q satisfy 

fo r r=0 ,1 ,  ..., (p-l) ,and 

subject to the conditions 

L-4 [G!lp-g] = 2(r + 1)  {f; G?& - j /  GE?&q) 

L,-p,-qI = 0 

GLP+(O) = G?p-p(0) = 0, G?,-* = D,,+a.e.s.iny as 7 + co. 

The last set of terms in (5.5) again consists of the eigensolutions, the coefficients 
cP being indeterminate as regards matching. Thus, outside the channel, the 
dominant term a t  infinity is the O ( x 4 )  eigensolution, followed by the O(x-l) 
forced term. 

5.3. Globat-circulation boundary gayer 

Near the leading edge and far downstream inside the channel, the expansions 
for the circulation boundary-layer stream function gc(x, 7)  can be determined by 
straightforward matching with the corresponding expansions of the forcing 
function P ( x )  = (2x)*$$ (x, f 0). The results are 

(5 .6 )  
C ( &  l)p-lepxfpGip(q) as x-+ 0 + ,  

- x4Gi(q) + 2 gyxY$, (7)  as x -+ + 00. 
Y 
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Here Zy are the indeterminate multipliers of the eigenfunctions GY. In  obtaining 
(5.6), (4.2) and (4.3) have been used. 

Far downstream outside the channel the boundary-layer expansion exhibits 
a resonance which will be described in some detail. From (4.3), 

cn P 

p = o  r=O 
P ( x )  - 2*$0 2 x-,-ti l,,(logx)' as x - f  +a. 

The exponent - 4 of the leading term in this expansion coincides with the first 
eigenvaluet , so that the corresponding term in the boundary-layer expansion 
is taken to be 26 $O lo0x-B [G(r)  + log xH(q)] ,  where 

L 4 H ]  = 0, H(0)  = H'(0)  = 0, H' = a.e.s.in 7 as q -f co (5.7) 

G' = 1 +a.e.s. in 9 as 7 -+ co. (5 .8 )  

and L-g[G] = 2( fAH"- f tH) ,  G(0)  = G'(0) = 0, 

The general solution of (5.7) is a multiple of the &st eigensolution (?+, the latter 
being known explicitly. Thus, 

H = eE-4 = fi(qfi - fo), (5.9) 

where 6 is a constant which must be determined such that the problem (5.8) 
possesses a solution. To find the value of e we integrate the differential equation 
(5.8) once, using (5.9), to get 

The problem of determining 6 so that this equation possesses a solution satisfying 
the boundary conditions in (5.8) has been considered by Wilson in a different 
context [see Wilson 1971, p. 793, reading G, fo and -6 for his ha,!, and k]. We 
need not repeat his arguments here, but only quote his result 8 = - 1.70. If d 
is a particular solution of equation (5.8) for this value of 6, the general solution 
is d + i+ (qfi - fo), i+ being an arbitrary constant not determined by matching. 
The boundary-layer expansion can now be written as 

9" - 2+$opoox-+{d(?l)+ i-&rf;-fO)}- 1.70x-~logx(qf;-fo) 
m P + 2 x-p-4 2 (logx)'Gr,-&q) + C 3dyE7(q)] .  (5.10) 

p = l  r = O  Y 
(y*-4) 

Here, the GLp+ satisfy 

L,-g[G?,-g] = 2 ( ~ +  l)(f~GiL$-!g-ftGrt,l_g} 

for r = 0,1 ,  ... ( p -  1 ) ,  and 
L,+[GE,-*] = 0 

t A similar term arises in the fist-order boundary layer on a parabola. In fact, in that 
context Van Dyke (1964) calculated the equivalent of 6 below in the same way as Wilson 
did later. 
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subject to the conditions 

P t  
GL (0) = GL7P+(0) = 0, GYP-.+ = Z,,+a.e.s. in 7 as 7 + 03. 

The multipliers I,, of the eigensolutions Gy are indeterminate again, as regards 
matching. 

This research was supported partly by the U.S. Army Research Office, Durham 
and partly by the National Science Foundation under Grant GP-28483. 

Appendix. Details of K*, P+ and S+ 
The factors of K(x) are given by 

(A 1 )  

The branch cut for K* extends from T is to 'tl im, the branch of the logarithm 
being chosen so that 8;. & i log { [ z  + (z2 + e2)4]/e} vanishes a t  _+ ia. 

For large z, 

(A 2)  

where the coefficients a, are the same as those in Stirling's formula 

qZ) - (2n)~exp{-z+(z-~)logz} 

For small z, 

Kz'(7rz) - 1 T iz[polog ( T iz) + P I ]  

+ ( T ~ Z ) ~  2?/30{log(Tiz)}Z+,8110g(~iz)+~2 +... for s = O ,  (A3) " 1 
where 

Zn being the coefficients in the expansion 
m 

n = l  
[ r ( i  + 4 - 1 =  1 + c. &,P. 

From its integral representation (3.8), the asymptotic expansions of P' are 
found to be 

and 

+ O[(  -it)"+& {log ( -if;)}"+'] for small (. (A 6) 
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- (-i)"-& lzlzn-' (coth 121 - I) dz, 
b, = ~ 

4457 c- K- z j  

dz (-47) 

(A 8) 

s 
(i)* e-iilr 

P I  

j = r J  

p ! z K ~ l ( n z )  coth (nz)  + I z~ ,Kz~  (nz) 
IUD = 2n- s c- ZP+% 

and vrP = I: Ibp-j'Crn'-r lEj-,.l, 

where ,Kzl (nz)  denotes the remainder after the O(zn) term in the small-z expan- 
sion; (A 3), the En are the Euler numbers and the 'Or are the binomial coefficients. 

From (A2) and (A5) we now get 

where the b, are determined by the relation 

6,+b",Z+ ... 
= -2*( b,+b2z+ ...). 

1+nalz+~2a2z2+... 

From (A3) and (As) we get 

P=O r=O 

+ 0[( - ig)"+*] for small E, (A 10) 

where the A, are functions of the /3, [in (A4)] and the -&-are functions of the 
pn, the pn [in (A 7)] and the vrp [in (As)]. It should be noted that terms like 

do not survive. 
g-*{log ( - it))' 
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